If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+15t-33=0
a = 1; b = 15; c = -33;
Δ = b2-4ac
Δ = 152-4·1·(-33)
Δ = 357
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{357}}{2*1}=\frac{-15-\sqrt{357}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{357}}{2*1}=\frac{-15+\sqrt{357}}{2} $
| -6d+4+5d-2d=56 | | -7x-6(6+5x=-258 | | 2x-25=3x+30 | | 4x-12=8x24 | | 3w+5=w+17 | | 12x-26=3x+19 | | 5a-2+3a+14=18 | | 9/1.5=h | | 20/15x12/20= | | 3x+10=3x-10-15x | | 8x−3(2x−4)=3(x−6)= | | 0.5g-3=71/2 | | 2x=-3/2 | | 3d-8=2d+12+2d | | 31/3=5/9x | | -2s+5=-11 | | f+4=4 | | 1.89=0.9r | | r/2+8=14 | | d/0.3=0.12 | | 2/3=(x−6)−13(x−3) | | -6=x×5 | | F(x)=3/2x+9 | | 12(n-4)+8=6(2n+8 | | b-11/10=-3 | | 17+4x=53 | | x/4-39=200 | | (3x+10)+(10x-60)=180 | | (1)/(5)x^2=5 | | 3(3m+9)-8=46 | | 3c-1/2(10c+6)=15 | | 3(3m+4)-8=46 |